余剑峤
James Jianqiao Yu
首页 论文 服务 ENG

教授、博士生导师

计算机科学与技术学院

哈尔滨工业大学(深圳)

广东省深圳市南山区深圳大学城

jqyu(at)hit.edu.cn jqyu(at)ieee.org Google Scholar
SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis

作者
Yuanshao Zhu’, Yongchao Ye’, Ying Wu, Xiangyu Zhao*, and James J.Q. Yu*

发表
Proc. Annual Conference on Neural Information Processing Systems, New Orleans, LA, US, December 2023

摘要
Urban mobility analysis has been extensively studied in the past decade using a vast amount of GPS trajectory data, which reveals hidden patterns in movement and human activity within urban landscapes. Despite its significant value, the availability of such datasets often faces limitations due to privacy concerns, proprietary barriers, and quality inconsistencies. To address these challenges, this paper presents a synthetic trajectory dataset with high fidelity, offering a general solution to these data accessibility issues. Specifically, the proposed dataset adopts a diffusion model as its synthesizer, with the primary aim of accurately emulating the spatial-temporal behavior of the original trajectory data. These synthesized data can retain the geo-distribution and statistical properties characteristic of real-world datasets. Through rigorous analysis and case studies, we validate the high similarity and utility between the proposed synthetic trajectory dataset and real-world counterparts. Such validation underscores the practicality of synthetic datasets for urban mobility analysis and advocates for its wider acceptance within the research community. Finally, we publicly release the trajectory synthesizer and datasets, aiming to enhance the quality and availability of synthetic trajectory datasets and encourage continued contributions to this rapidly evolving field. The dataset and code are released at https://github.com/Yasoz/SynthTraj and https://anonymous.4open.science/r/SynthTraj-code.