James Jianqiao Yu
余剑峤
Home Publications Services 中文

Lecturer

Department of Computer Science

University of York

CSE/139, YO10 5GH, UK

jqyu(at)ieee.org Google Scholar
Evolutionary Artificial Neural Network Based on Chemical Reaction Optimization

Authors
James J.Q. Yu, Albert Y.S. Lam, and Victor O.K. Li

Publication
Proc. IEEE Congress on Evolutionary Computation, New Orleans, LA, US, June 2011

Abstract
Evolutionary algorithms (EAs) are very popular tools to design and evolve artificial neural networks (ANNs), especially to train them. These methods have advantages over the conventional backpropagation (BP) method because of their low computational requirement when searching in a large solution space. In this paper, we employ Chemical Reaction Optimization (CRO), a newly developed global optimization method, to replace BP in training neural networks. CRO is a population-based metaheuristics mimicking the transition of molecules and their interactions in a chemical reaction. Simulation results show that CRO outperforms many EA strategies commonly used to train neural networks.