James Jianqiao Yu
余剑峤
Home Publications Services 中文

Professor

School of Computer Science and Technology

Harbin Institute of Technology (Shenzhen)

University Town of Shenzhen, Nanshan District, Shenzhen, Guangdong, China

jqyu(at)hit.edu.cn jqyu(at)ieee.org Google Scholar
Attn-CommNet: Coordinated Traffic Lights Control on Large-scale Network Level

Authors
Jiashi Gao, Xinming Shi, and James J.Q. Yu*

Publication
Proc. IEEE International Conference on Tools with Artificial Intelligence, Washington, D.C., US, November 2021

Abstract
Traffic lights control could be regarded as a multi-agent coordinated problem. A model-free reinforcement learning (RL) approach is a powerful framework for solving such coordinated policy-making problems without prior environmental knowledge. In order to approach a global policy, communication among agents needs to be built. To enable dynamic and scalable communication, we propose a new RL model, CommNet based on Local Attention Mechanism (Attn-CommNet), which uses local selection and attention mechanism between hidden layers to facilitate cooperation. We evaluated the proposed method using synthetic and real word traffic flows under multi-scale road networks. The results demonstrate that the proposed method can get better performance in multi-scale problems, especially large-scale problems compared to the state-of-the-art methods.